
In this Chapter
 » Introduction
 » Bubble Sort
 » Selection Sort
 » Insertion Sort
 » Time Complexity of

Algorithms

Chapter

“Every one of today's smartphones has
thousands of times more processing power
than the computers that guided astronauts to

the moon.”

— Peter Thiel

5.1 IntroductIon

Sorting is the process of ordering or arranging a
given collection of elements in some particular
order. We can sort a collection of numbers in
ascending (increasing) or descending (decreasing)
order. If the collection is of strings, we can sort it
in an alphabetical order (a-z or z-a) or according
to the length of the string. For example, words in a
dictionary are sorted in alphabetical order; seats
in an examination hall are ordered according to
candidates’ roll number. We can also sort a list of
students based on their height or weight.

Imagine finding the meaning of a word from
a dictionary that is not ordered. We will have to
search for the word on each page till we find the
word, which will be very tedious. That is why
dictionaries have the words in alphabetical order
and it ease the process of searching.

5 Sorting

Chpater-5.indd 67 18-Jun-21 2:31:12 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii Sorting68

Sorting a large number of items can take a substantial
amount of time. However, this extra time (called
overhead) is worth when compared to the amount of time
needed to find an element from an unsorted list. Sorting
is an important area of study in computer science, and
many sorting algorithms have been developed and
analysed from their performance point of view. In this
chapter, we will learn about three sorting methods and
implement them using Python. Bubble sort is discussed
in section 5.2, followed by discussion on selection sort
and insertion sort in section 5.3 and 5.4, respectively

5.2 BuBBle Sort

The first sorting technique we are going to understand is
Bubble sort. It sorts a given list of elements by repeatedly
comparing the adjacent elements and swapping them
if they are unordered. Swapping two elements means
changing their positions with each other. In algorithm,
every iteration through each element of a list is called a
pass. For a list with n elements, the bubble sort makes
a total of n – 1 passes to sort the list. In each pass, the
required pairs of adjacent elements of the list will be
compared. In order to arrange elements in ascending
order, the largest element is identified after each pass
and placed at the correct position in the list. This can
be considered as the largest element being ‘bubbled up’.
Hence the name Bubble sort. This sorted element is not
considered in the remaining passes and thus the list of
elements gets reduced in successive passes.

Figure 5.1 demonstrates the working of the bubble
sort method to arrange a list in ascending order. Let
us consider a list having 6 elements as numList = [8,
7, 13, 1, -9, 4]. In the figure, elements being compared
are highlighted with blue colour and sorted elements
are highlighted with green colour. To begin sorting,
the element at index 0 is compared with the element at
index 1. If the first element is bigger, it is swapped with
the second. Else, no change is done. Next, the element
at index 1 is compared with the element at index 2. This
continues till the end of the list is reached. After the
first pass, the largest element will reach the end of the
list as shown in Figure 5.1 with green colour.

Can you identify
other examples
where sorting plays
an important role in
computers?

In Figure 5.1, we can
see that the list got
sorted in the 4th pass
itself. Still the bubble
sort technique made
a redundant 5th pass
which did not result
in any swap. If there
is no swapping in any
pass, it means the
list is already sorted,
hence the sorting
operation needs to
be stopped. Can you
think of making any
improvement in the
Algorithm 5.1 so that
it stops when the list
becomes sorted?

Chpater-5.indd 68 18-Jun-21 2:31:13 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii Sorting 69

numList
Index 0 1 2 3 4 5

8 7 13 1 -9 4

Comparison in Pass 1

8

Swap

7 13 1 -9 4

7 8 13 1 -9 4

No Change

7 8 13 1 -9 4

7 8 1 13 -9 4

7 8 1 -9 13 4

7 8 1 -9 4 13

Swap

Swap

Swap

Comparison in Pass 2

7 8 1 -9 4 13

7 8 1 -9 4 13

Swap

7 1 8 -9 4 13

Swap

7 1 -9 8 4 13

Swap

7 1 -9 4 8 13

Swap

No Change

Comparison in Pass 3

7 1 -9 4 8 13

Swap

1 -97 4 8 13

Swap

1 -9 7 4 8 13

Swap

1 -9 4 7 8 13

Swap

Comparison in Pass 4

1 -9 4 7 8 13

Swap

-9 1 4 7 8 13

No Change

-9 1 4 7 8 13

Chpater-5.indd 69 18-Jun-21 2:31:14 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii Sorting70

Algorithm 5.1 shows the steps followed for the bubble
sort that takes numList as a list of n elements, and
sorts the list in ascending order:

Algorithm 5.1: Bubble Sort
BUBBLESORT(numList, n)
Step 1: SET i = 0

Step 2: WHILE i< n REPEAT STEPS 3 to 8

Step 3: SET j = 0

Step 4: WHILE j< n-i-1,REPEAT STEPS 5 to 7

Step 5: IF numList[j] > numList[j+1] THEN

Step 6: swap(numList[j],numList[j+1])

Step 7: SET j=j+1

Step 8: SET i=i+1

Comparison in Pass 5

Indicates elements to be swapped

Indicates elements already sorted

Swap

-9 1 4 7 8 13

-9 1 4 7 8 13

Figure 5.1: Comparisons done in different passes of Bubble sort

Program 5-1 Implementation of bubble sort using Python.

def bubble_Sort(list1):

 n = len(list1)

 for i in range(n): # Number of passes

 for j in range(0, n-i-1):

 # size -i-1 because last i elements are already sorted
 #in previous passes

 if list1[j] > list1[j+1] :

 # Swap element at jth position with (j+1)th position

 list1[j], list1[j+1] = list1[j+1], list1[j]

numList = [8, 7, 13, 1, -9, 4]

bubble_Sort(numList)

Activity 5.1

Algorithm 5.1 sorts a
list in ascending order.
Write a bubble sort
algorithm to sort a
list in descending
order?

Chpater-5.indd 70 18-Jun-21 2:31:16 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii Sorting 71

print (“The sorted list is :”)

for i in range(len(numList)):

 print (numList[i], end=" ")

Output:
The sorted list is :

-9 1 4 7 8 13

5.3 Selection Sort

Selection sort is another sorting technique. To sort a
list having n elements, the selection sort makes (n-1)
number of passes through the list. The list is considered
to be divided into two lists -- the left list containing
the sorted elements, and the right list containing the
unsorted elements. Initially, the left list is empty, and
the right list contains all the elements.

For arranging elements in ascending order, in the first
pass, all the elements in the unsorted list are traversed
to find the smallest element. The smallest element is
then swapped with the leftmost element of the unsorted
list. This element occupies the first position in the
sorted list, and it is not considered in further passes. In
the second pass, the next smallest element is selected
from the remaining elements in the unsorted list and
swapped with the leftmost element of the unsorted list.
This element occupies the second position in the sorted
list, and the unsorted list reduces by one element for
the third pass.

This process continues until n-1 smallest elements
are found and moved to their respective places. The nth
element is the last, and it is already in place. Figure
5.2 demonstrates the working of selection sort method
to arrange a list in ascending order. In this Figure,
elements being compared are shown using arrows and
the smaller element in a comparison is highlighted with
blue colour. The sorted elements are highlighted —

Activity 5.2

Apply bubble sort
technique to sort a list
of elements numList2
= [8, 7, 6, 5, 4]. Show
the positions of
elements in the list
after each pass.
In which pass
the last swap
happens?

Chpater-5.indd 71 11/10/2021 10:07:56 AM

Reprint 2025-26

Computer SCienCe - ClaSS Xii Sorting72

numList
Index 0 1 2 3 4 5

8 7 13 1 -9 4

Comparison in Pass 1

8 7 13 1 -9 4

8 7 13 1 -9 4

8 7 13 1 -9 4

8 7 13 1 -9 4

8 7 13 1 -9 4

8 7 13 1 -9 4

8 7 13 1-9 4

Swap

Swap

8 7 13 1-9 4

8 7 13 1-9 4

8 7 13 1-9 4

8 7 13 1-9 4

8 7 13 1-9 4

1 7 13 8-9 4

Comparison in Pass 2

Swap

1 7 13 8-9 4

1 7 13 8-9 4

1 7 13 8-9 4

1 7 13 8-9 4

1 4 13 8-9 7

Swap

1 4 13 8-9 7

1 4 13 8-9 7

1 4 13 8-9 7

1 4 8-9 7 13

Comparison in Pass 3 Comparison in Pass 4

Chpater-5.indd 72 18-Jun-21 2:31:17 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii Sorting 73

Indicates the smaller element in a
comparisson
Indicates the elements in the sorted list

Sorted List

Unsorted List

Indicates elements being compared

Comparison in Pass 5

1 4 8-9 7 13

1 4 8-9 7 13

1 4 8-9 7 13

Figure 5.2: Comparisons done in different passes of Selection sort

Algorithm 5.2: Selection Sort
SELECTIONSORT(numList, n)

Step 1: SET i=0

Step 2: WHILE i< n REPEAT STEPS 3 to 11

Step 3: SET min = i, flag = 0

Step 4: SET j= i+1

Step 5: WHILE j<n, REPEAT STEPS 6 to 10

Step 6: IF numList[j] < numList[min] THEN

Step 7: min = j

Step 8: flag = 1

Step 9: IF flag = 1 THEN

Step 10: swap(numList[i],numList[min])

Step 11: SET i=i+1

The following is an algorithm for the selection sort
that takes numList as a list consisting of n elements,
and sorts the list in ascending order:

Algorithm 5.2 shows the steps followed for the
selection sort that takes numList as a list of n elements,
and sorts the list in ascending order:

Activity 5.3

Consider a list of 10
elements:
randList =
[7,11,3,10,17,23,1,4,21,5].
Determine the partially
sorted list after
four complete
passes of
selection sort.

Chpater-5.indd 73 18-Jun-21 2:31:18 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii Sorting74

5.4 InsertIon sort

Insertion sort is another sorting algorithm that can
arrange elements of a given list in ascending or
descending order. Like Selection sort, in Insertion sort
also, the list is divided into two parts - one of sorted
elements and another of unsorted elements. Each
element in the unsorted list is considered one by one
and is inserted into the sorted list at its appropriate
position. In each pass, the sorted list is traversed from
the backward direction to find the position where the
unsorted element could be inserted. Hence the sorting
method is called insertion sort.

In pass 1, the unsorted list has n-1 elements and the
sorted list has a single element (say element s). The first
element of the unsorted list (say element e) is compared
with the element s of sorted list. If element e is smaller
than element s, then element s is shifted to the right
making space for inserting element e. This shifting
will now make sorted list of size 2 and unsorted list of
size n-2.

In pass 2, the first element (say element e) of unsorted
list will be compared with each element of sorted list

Program 5-2 Implementation of selection sort using Python.

def selection_Sort(list2):
	 flag	=	0	 #to	decide	when	to	swap
	 n=len(list2)
	 for	i	in	range(n):	#	Traverse	through	all	list	elements
	 	 min	=	i
	 	 for	j	in	range(i	+	1,	len(list2)):	#the	left	elements	
	 	 #are	already	sorted	in	previous	passes
	 	 			if	list2[j]	<	list2[min]: #	element	at	j	is	smaller	
	 	 			#than	the	current	min	element
	 	 min	=	j
	 	 flag	=	1
	 	 if	flag	==	1	:		#	next	smallest	element	is	found
	 	 list2[min],	list2[i]	=	list2[i],	list2[min]

numList	=	[8,	7,	13,	1,	-9,	4]
selection_Sort(numList)
print	("The	sorted	list	is	:")
for	i	in	range(len(numList)):
	 print	(numList[i],	end="	")

Output:
The	sorted	list	is	:
-9	1	4	7	8	13

Chpater-5.indd 74 16 December 2021 04:07:22

Reprint 2025-26

Computer SCienCe - ClaSS Xii Sorting 75

starting from the backward direction till the appropriate
position for insertion is found. The elements of sorted
list will be shifted towards right making space for the
element e where it could be inserted.

This continues till all the elements in unsorted lists
are inserted at appropriate positions in the sorted list.
This results into a sorted list in which elements are
arranged in ascending order.

Figure 5.3 demonstrates the working of the insertion
sort to arrange a list in ascending order.

numList
Index 0 1 2 3 4 5

8 7 13 1 -9 4

Comparison in Pass 1

8

Swap

7 13 1 -9 4

8 7 13 1 -9 4

7 8 13 1 -9 4

7 8 13 1 -9 4

7 8 13 1 -9 4

Comparison in Pass 2
No Change

1 7 -9 4138

1 7 13 4-98

1 7 13 48-9

-9 1 13 487

Swap

Swap

Swap

7 8 13 1 -9 4

7 8 -9 4

Comparison in Pass 3 Comparison in Pass 4

131

7 1 -9 4138

1 7 -9 4138

Swap

Swap

Swap

Swap

-9 1 13 487

Chpater-5.indd 75 18-Jun-21 2:31:18 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii Sorting76

Activity 5.4

Consider a list of 10
elements:
Array =
[7,11,3,10,17,23,1,4,21,5]
Determine the partially
sorted list after
three complete
passes of
insertion sort.

Comparison in Pass 5

Indicates element(s) in sorted list
-9 1 13 487

-9 1 1387

Swap

Swap

Swap

4

-9 1 1347 8

-9 1 1374 8

No Change

-9 1 1374 8

Figure 5.3: Comparisons done in different passes of Insertion sort

Let us consider that numList is a list consisting
of n elements. Algorithm 5.3 sorts the list numList in
ascending order using insertion sort technique.

Algorithm 5.3: Insertion Sort
INSERTIONSORT(numList, n)
Step 1: SET i=1

Step 2: WHILE i< n REPEAT STEPS 3 to 9

Step 3: temp = numList[i]

Step 4: SET j = i-1

Step 5: WHILE j> = 0 and numList[j]>temp,REPEAT
 STEPS 6 to 7

Step 6: numList[j+1] = numList[j]

Step 7: SET j=j-1

Step 8: numList[j+1] = temp #insert
 temp at position j

Step 9: set i=i+1

Chpater-5.indd 76 18-Jun-21 2:31:19 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii Sorting 77

Program 5-3 Implementation of insertion sort using
Python.

def insertion_Sort(list3):
 n= len(list3)
 for i in range(n): # Traverse through all elements
 temp = list3[i]
 j = i-1
 while j >=0 and temp< list3[j] :
 list3[j+1] = list3[j]
 j = j-1
 list3[j+1] = temp

numList = [8, 7, 13, 1, -9, 4]
insertion_Sort(numList)
print (“The sorted list is :”)
for i in range(len(numList)):
 print (numList[i], end=" ")

Output:
The sorted list is :
-9 1 4 7 8 13

5.5 Time ComplexiTy of AlgoriThms

We have studied that there can be more than one approach
to solve a problem using a computer. In Class XI, we
compared four different algorithms to check whether a
given number is prime or not. For the same problem, one
algorithm may require more processing time than the
other. The amount of time an algorithm takes to process
a given data can be called its time complexity.

For a small set of data elements shown in examples
of this chapter so far, the time and memory required by
different algorithms do not differ significantly. However,
in the real world, sorting algorithms are required to
work on huge amounts of data. In such cases, the
total time utilisation becomes significant, and therefore
it is important to consider the time complexity of an
algorithm before being used in a real world data set.

Computer scientists proposing different techniques
for sorting are always interested to find out their time
complexity. The aim is to find out how a sorting algorithm
behaves if the order of input elements changes or if the
number of elements in the list increases or decreases.
Such comparisons help to decide which algorithm is
more suitable for which kind of data and application.

Chpater-5.indd 77 07-Sep-21 3:10:51 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii Sorting78

Calculating the complexity of different algorithms
involves mathematical calculations and detailed
analysis, and it is beyond the scope of this textbook to
discuss them in detail. However, we will discuss some
basics of complexity to get some ideas. The following
tips will guide us in estimating the time complexity of
an algorithm.
• Any algorithm that does not have any loop will have

time complexity as 1 since the number of instructions
to be executed will be constant, irrespective of the
data size. Such algorithms are known as Constant
time algorithms.

• Any algorithm that has a loop (usually 1 to n) will
have the time complexity as n because the loop will
execute the statement inside its body n number of
times. Such algorithms are known as Linear time
algorithms.

• A loop within a loop (nested loop) will have the time
complexity as n2. Such algorithms are known as
Quadratic time algorithms.

• If there is a nested loop and also a single loop, the
time complexity will be estimated on the basis of the
nested loop only.

Now, look at the Python programs of the three sorting
techniques discussed in this chapter, you will notice that
in each of the three programs, there is a nested loop,
i.e., one inside another. So according to the above rules,
all the sorting algorithms namely, bubble sort, selection
sort and insertion sort have a time complexity of n2.

SummAry

• The process of placing or rearranging a collection
of elements into a particular order is known as
sorting.

• Bubble sort is the simplest sorting algorithm
that works by repeatedly swapping the adjacent
elements in case they are unordered in n-1 passes.

• In Selection Sort, the smallest element is selected
from the unsorted array and swapped with the

noteS

Chpater-5.indd 78 18-Jun-21 2:31:19 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii Sorting 79

1. Consider a list of 10 elements:
numList =[7,11,3,10,17,23,1,4,21,5].

Display the partially sorted list after three complete
passes of Bubble sort.

2. Identify the number of swaps required for sorting the
following list using selection sort and bubble sort and
identify which is the better sorting technique with
respect to the number of comparisons.

 List 1 : 63 42 21 9

3. Consider the following lists:

 List 1: 2 3 5 7 11

 List 2: 11 7 5 3 2

 If the lists are sorted using Insertion sort then
which of the lists List1 or List 2 will make the minimum
number of comparisons? Justify using diagrammatic
representation.

4. Write a program using user defined functions that
accepts a List of numbers as an argument and finds its
median. (Hint : Use bubble sort to sort the accepted list.
If there are odd number of terms, the median is the
center term. If there are even number of terms, add the
two middle terms and divide by 2 get median)

leftmost element, and that element becomes a
part of the sorted array. The process continues for
the next element in the unsorted array till the list
is sorted.

• Insertion Sort places the element of a list at
its suitable place in each pass. It is similar to
the placing of cards at its right position while
playing cards.

• Complexity analysis is performed to explain
how an algorithm will perform when the input
grows larger.

exercISe

noteS

Chpater-5.indd 79 18-Jun-21 2:31:19 PM

Reprint 2025-26

Computer SCienCe - ClaSS Xii Sorting80

5. All the branches of XYZ school conducted an aptitude
test for all the students in the age group 14 - 16. There
were a total of n students. The marks of n students are
stored in a list. Write a program using a user defined
function that accepts a list of marks as an argument
and calculates the ‘xth’ percentile (where x is any number
between 0 and 100).You are required to perform the
following steps to be able to calculate the ‘xth’ percentile.

 Note: Percentile is a measure of relative performance i.e. It is
calculated based on a candidate’s performance with respect
to others. For example : If a candidate's score is in the 90th
percentile, that means she/he scored better than 90% of
people who took the test.

Steps to calculate the xth percentile:
 I. Order all the values in the data set from smallest to

largest using Selection Sort. In general any of the
sorting methods can be used.

 II. Calculate index by multiplying x percent
by the total number of values, n.
For example: to find 90th percentile for 120 students:
 0.90*120 = 108

 III. Ensure that the index is a whole number by using
math.round()

 VI. Display the value at the index obtained in Step 3.

The corresponding value in the list is the xth percentile.

6. During admission in a course, the names of the students
are inserted in ascending order. Thus, performing the
sorting operation at the time of inserting elements in
a list. Identify the type of sorting technique being used
and write a program using a user defined function that
is invoked every time a name is input and stores the
name in ascending order of names in the list.

noteS

Chpater-5.indd 80 18-Jun-21 2:31:19 PM

Reprint 2025-26

	lecs1ps
	lecs101
	lecs102
	lecs103
	lecs104
	lecs105
	lecs106
	lecs107
	lecs108
	lecs109
	lecs110
	lecs111
	lecs112
	lecs113

